$\lambda = {\delta_w \over \delta_v} \cdot T^2$
$\alpha = {-\lambda^2 + \sqrt{\lambda^4 + 16\lambda^2} \over 8}$
$\lambda = {\delta_w \over \delta_v} \cdot T^2$
$\gamma = {4 + \lambda - \sqrt{8\lambda + \lambda^2} \over 4}$
$\alpha = 1 - \lambda^2$
$\beta = 2 \cdot (2 - \alpha) - 4 \cdot \sqrt{1 - \alpha}$
$\lambda = {\delta_w \over \delta_v} \cdot T^2$
$b = {\lambda \over 2} - 3$
$c = {\lambda \over 2} + 3$
$d = -1$
$p = c - {b^2 \over 3}$
$q = {2b^3 \over 27} - {bc \over 3} + d$
$v = \sqrt{q^2 + {4p^3 \over 27}}$
$z = -\sqrt[3]{q + {v \over 2}}$
$s = z - {p \over 3z} - {b \over 3}$
$\alpha = 1 - s^2$
$\beta = 2 \cdot (1 - s)^2$
$\gamma = {\beta^2 \over 2\alpha}$