$$
\overrightarrow{v} = \left( \begin{array}{c} 1 \\\\ 2 \end{array} \right)
$$
$$
A =
\begin{bmatrix}
1 & 0 & 2 \\\\
-2 & 1 & 3
\end{bmatrix}
$$
$$
\begin{bmatrix}
x_{a} \\\\
y_{a} \\\\
1
\end{bmatrix}
=
\begin{bmatrix}
cos(\theta) & -sin(\theta) & \delta_{x} \\\\
sin(\theta) & cos(\theta) & \delta_{y} \\\\
0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
x_{b} \\\\
y_{b} \\\\
1
\end{bmatrix}
$$
绘制竖实线,如{cc | cc} |
$$
\left[
\begin{array}{cc|cc}
1 & 2 & 1 & 0 \\\\
4 & 5 & 0 & 1
\end{array}
\right]
$$
绘制竖虚线,如{cc:cc}
$$
\left[
\begin{array}{cc:cc}
1 & 2 & 1 & 0 \\\\
4 & 5 & 0 & 1
\end{array}
\right]
$$
$$
\begin{equation}
\begin{split}
\hat x_{n,n} &= w_1 \cdot z_n + (1-w_1) \cdot \hat x_{n,n-1} \\\\
&= w_1 \cdot z_n + \hat x_{n,n-1} - w_1 \cdot \hat x_{n,n-1} \\\\
&= \hat x_{n,n-1} + w_1 \cdot (z_n - \hat x_{n,n-1})
\end{split}
\nonumber
\end{equation}
$$
$$
\begin{cases}
\ x + 2y + 3z = 6 \\\\
2x - 3y + 2z = 14 \\\\
3x + \ y - \ z = -2
\end{cases}
$$